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The equilibrium position stability of an autonomous system of ordinary differen-
tial equations is considered in the case of n pairs of pure imaginary roots
with the simultaneous presence of several resonances, It is shown using
Chetaev's theorem [1] that when among the solutions of the model system there
are increasing solutions of the invariant ray type, the complete system is
Liapunov unstable,

Let us consider the system

Ty = Azy + Xy (74), Xy (0)=0 1)

where Z4, and X, are 2n -dimensional vectors of space E,, A is a constant
square matrix with pure imaginary eigenvalues -+ i@, (0, >0, s=1,...,n)
among which there are no multiples, and X, (x,) is a holomorphic vector function
of x4, whose expansion in powers of Z, ‘begins with an m-th order form,

Let system (1) have p >> 1 resonance relations of the form

<Q)PV>=O, V=1‘""1“‘ (2)
Q:(ﬁ)l, . ey (‘)q)i PV=(pV17 e vy pvq)

q
IP‘V'=J_Z{IPVJ'|=]€, k=m+1>3

where P, is a vector of dimension ¢ (¢ <C n) with integral mutually disjoint com-
ponents, and k is an odd number.
The stability of equilibrium position of the autonomous system (1) with condition
(2) was investigated in [2 — 6] in the first nonlinear order. Below we consider the
equilibrium position stability of the complete system (1) when condition (2)is satisfied.
Using the special linear transform it is possible to reduce system (1) to the form

r = ioz + X (xv y)7 !/' = —'imy + Y (17, y) 3
where Z and y are complex conjugate n-dimensional vectors; w is a diagonal
n X n matrix, and X (z, y) and Y (z, y) are holomorphic complex conjugate
n -dimensional vector functions whose expansions in powers of z and y begin with
m -th order forms,
Using the nonlinear normalizing transform we can reduce system (3) in polar co-
ordinates 7y, @, (s=1, ..., r) [6] to the form (equations for Qq are omitted)

n
ri =2 ) BvQvi () + X5(r, @), 1o =Ta( @) (4)
V=1
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ii“’”' RO @)+ Ov(r, @)
a4

j=1 s v=1,...,p a=q¢g+1,...,n
q
Ry = H a Ipwl’ Oy = D Pvij
=1 J=1
Qv]' (ev) = a'vj cos ev —I_ bv] Sin ev, Qv]’, = dQv] / dev
F=( o T D= (@ - Oa)y (1, @) ~ O (I 7 |[E-D)

Yo(r, @) ~O(lrf|®vr), s=1,...,n
ij Bv) =0, if py;= 0

In the corresponding model system
Yo(r,9)=0, 6,(r, ) =0 (s=1,...,nv=1,...,p)
For the model system to have an increasing solution of the invariant ray type
ri=1Fkib(t), k; >0, =202 j=1,...¢ (%)
6y =0,"=const, v=1,...,p

it is necessary and sufficient that

ki ZR Qv >0 ii'“’w e o (©
7 v vj ’ -

i=1j=1
RS = Rv (fi, - - .y k),  Ovi® = Q; (8:°);
j:i,...,q;’v.—=1’.'_,”

Indeed, by substituting the solution of form (5) into the model system and setting
b= 2bk /2 )
we obtain the required relations (6)., It is, on the other hand, evident that the solu-

tion of form (5) of the model system exists, if k; >0 (j=1,...,¢) and

0> (v=1,..., p) satisfying (6) can be found. Function b () is then obtain-
ed from Eq. (7).

We introduce the notation (8pn is the Kronecker delta)

1
Aﬁh = 21 S:ﬂth - 265!;; AB, nv = SVB
V==

n
Aniv,p = i§1 (Tv°'Kip — Lvig),  Ansv,nei = — Tw’

q

1
Kyg = ——rmeer | pwi|— (@ —B)| Pl
2Vq—p [I;H ]
I RP o Pyl Qy” (g —B) | Pyg | Qg™
vig — Vq — k[ - kB ]

I=B+1
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2R.° [ }“:' Qv; <ev> (9 —B) Qug (8,) ]

B+1)Vae—5 kg

Sva(By) =
I=sf41
S\;B = Svﬁ (ev )

q
9.
Ty (8) = -———-””‘Q"‘ R
;

ﬁ,h=1,...,q—'1; vpi=1,...,p

Theorem, Ifweassume
det || Avg — N8yl ## 0, N =1,2,... (v, =1, ...,n+p; &
8 F ¢ .. m)
and that the respective model system has an increasing solution of the invariant ray
type (5), then the equilibrium position of the complete system (4) is Liapunov unstable,

Proof, We introduce in (4) the generalized n -dimensional cylindrical co-
ordinates p, Yg(p=1,...,¢g — 1), ra{l@ =g+ 1, ..., n) defined by form-

ulas i
rn=rkpcosy; ;= kijOS’lij siny;,, j=2,...,9—1 9
l=]_
q—1
Tq =kqPH sing;; rg=rq oa=g-+14,.
5—_‘1

The following values correspond to the increasing solution of form (5) in the co-
ordinate system (9):

. ° — /3
Pp = g%, cospg’ = (g — P+ 1)Vs siny’ = (q_iﬁ_ﬁ;-r)

Bp=1,...,9—1

We linearize the new systemn with respect to variables g, 8y in the neighbor-
hood of point 4,°, §,° taking into account conditions (6), apply the transformation

2(1-};'\’)
= Pg* + z%'l capt’?  B=1,...,q—1

2149
= 0y* -+ IZ dupt/?,  v=1,...,p
=1

where ¢p;  and dy; are some constants and y is a parameter defined below
and, allowing for (8), obtain a system of the form

p" = 2up" /2 F (ry, ¥, @)

g-1
Y+ _xpk12-1(2 Agnpn* + ZAa,nﬂ *) + Fy (r $*, )

(1“"1

By*" = xp* /2‘1( 2 Angy, nPp* + 2.! Anv, naib; ) + Friv (re 9%, @)
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ra = Fo (rs, %, 9)
p=1,..,9—Liv=1 .., ma=q9+4+1,...,n
Iy = (P, Tgt1y « o = rn)y 'li)* == (’li)l*v LRI ¢q~1)7 6% = (Gl#', ..

o B4%), ® == g/

F (ry, ¥*, ) = FO (ry, b*, @) + ot~ F® (ry, v*, ¢)

FO ~ O (|| ry [J&+0/2), FO (0,9*, @) ~ O (] ($*, 6%) |})

Fy (ry, ¥*, 9) == Fo® (ry, *, @) + p71F® (ry, ¥, ¢) +
PHRAF® (ry, ¥, @)

Fo® ~ O (|| 7 ||J&02), Fo® ~ O (|] ry ||FDR),

Fo® (0, ¥*, @) ~ O (| (b*, 8%) |I*)

Folp,0,...,0) ~0(p*i)y v=1,...,n+4p

(v#q,...,n)

F(Z (r*’ ‘4’*, (P) ~ 0 (” r*”(kﬂ)ﬂ)’ o = q + 11 CRERRPRS (2

Let us consider functions
V=np, Wﬁ = Pg*? — pz(iw)
v = By*2 — 21V % = Tod — p¥IV
ﬁ=1,...,q~—1;v=1,...,p;azq—*—i,...,n‘
The inequality VV" > 0 is satisfied in the cone K containing the increasing

solution of the model system for O < || ry [|<< T (v is fairly small), The cone
K, is determined by the inequality

max W, L0, v=1,...,n4+pn(t*9g
13

Continuing our reasoning in conformity with [7] (Theorem 3, 1), we determine
with an accuracy to terms of order p'/+*9 the derivatives

ntu
Woo = 2up0° {t?——;l Awde —2(1 + )]
Wa°'=_4xpo(1+v); g‘mZ‘Y‘Fk/z‘{‘iv ‘6g|<1
v,t{=1,..,n+p(®i*qg..,na=q+1...,n
It is obvious that for all admissible values of 8y, and fairly large y and when

h
ProTwWehdVe 0, =1, ..., n4p(toE0)

Hence functions V and W =max Wi, (\ =1, ..., n 4 p; v 5= g) satisfy
Chetaev's theorem on instability {1]. The theorem is proved.

Example, Letusconsider the interaction of two resonances
O+ 0 —g=0, 20 —w=0

of which the firstisstrong andthe second weak (in the terminology of [5] ). Let the
model systemn be in this case of the form

S —_— 10
7'1. = 2611 Vrll‘gra sin 91 + 2bg‘ Vrf‘rd sin 92 ( )

ry = 2b, Vrrarssin®y  (p=2,3),  ry = 2by V1 sin O,
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b b b J— b —=
0, = (.._ll_ I ) V rirars cos 0, +- ‘Tall- V rirecos O,

" 2 T3
P Ty — 2by byy -
By == " V rirars cos 6, (T + s ) Vrifrycos 0

0i = @+ @ — @3, 0, = 20, — q,
(sign byibyp = 1 (j, h = 1, 2, 3); sign by by, = —1)

which has the following increasing solution;

1y = | bubibig | & (1), ra=bu| by?b (2)
ro = | biy | ( buabig | + | barboa DO (8, v=2,3
8, = (—1)-1(n/2)sign b, v=1,2

Consequently, in conformity with the proved theorem, the equilibrium position
of the complete system, to which corresponds the model system (10), is Liapunov un-
stable for all nonzero parameters by;» except those that satisfy the condition
| Barbag / bigbyg | = N (N =2,3,...).

The author thanks vV, V. Rumiantsev for formulating this problem,
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